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A transonic investigation has been made of a preliminary concept
of a horizontal-take-off-and-horizontal-landing recoverable first-stage
booster with various large upper stages. The recoverable booster con-
sisted of a wedge-slab 700 delta wing with a semicylindrical fuselage.
The upper stages consisted of either a one-stage or a two-stage expend-
able rocket booster and a ballistie, rocket, or winged-rocket spacecraft.
The upper stages were tested in both piggyback and underslung positions
on both a high-wing and a low-wing recoverable booster. The tests were
made in the 8-foot transonic pressure tunnel over a Mach number range
from 0.6 to 1.2. Data were obtained at 0° and 5° sideslip over an angle-
of-attack range from -2° to 12°. The Reynolds number per foot varied

from 1.6 X 106 to 3.2 x 106.

The results showed that only small changes in longitudinal stability
and trim occurred when either the one-stage or two-stage rocket booster
was added to the recoverable booster. However, the installation of upper
stages to the recoverable booster caused a significant reduction in the
directional stability. An increase of as much as 50 percent in transonic
drag was attributable to the upper stages, but improvement in the drag
could be achieved by closing the afterbody. The one-stage rocket booster
caused a larger transonic drag rise than the two-stage rocket booster
because of the adverse effect on the overall area distribution. Neither
high-wing nor low-wing arrangements offered distinct advantages in sta-
bility or drag.
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INTRODUCTION

»
-

Some of the anticipated advantages of placing large payloads in
earth orbit through the use of a vertical-take-off-and-horizontal-landing
(VTOHL) recoverable-booster system have been outlined in reference 1,
and the transonic aerodynamic characteristics of a VIOHL recoverable
booster were reported therein. An alternate approach to the recoverable
booster consists of using a manned horizontal-take-off-and-horizontal-
landing (HTOHL) vehicle as first stage, and mounting the upper stages in
parallel with the first stage. Such a booster, if propelled by air-
ingestion engines, offers the following capabilities in addition to those
indicated in reference 1l: offset launch capability through the use of
aerodynamic flight to the required orbit plane; ferry flight of the launch
vehicle, and possibly of upper-stage elements; piloted control of both
launch altitude and attitude; large diversity of upper-stage configura-
tions; normal development and testing of the first stage throughout its
flight envelope; and growth potential. A principal advantage of the HTOHL

recoverable-booster system lies in its inherent high aerodynamic efficiency.

A program of investigation to determine the aerodynamic character-
istics of horizontal-take-off-and-horizontal-landing recoverable-booster
concepts has, therefore, been undertaken at transonic and hypersonic
speeds. The present paper contains results for several preliminary con-
figurations investigated at transonic speeds. Results of tests of the
first-stage recoverable booster alone were reported in reference 2. For
the present investigation, the upper stages consisted of several rocket
boosters and spacecraft mounted in parallel with the winged recoverable
booster. Mission requirements were established to place a maximum of
approximately 30,000 pounds of spacecraft into a 300-nautical-mile orbit.
As indicated in reference 2, the first stage was conceived to utilize
turboramjet power plants with the hydrocarbon fuel carried entirely
within the fuselage. First-stage separation was estimated to occur at
a Mach number of 6.0 and an altitude of about 100,000 feet, with the
upper stages sized for the specific mission. Gross take-off wing loading
was assumed to be 120 1b/sq ft and the ratio of thrust to gross weight
was assumed to be 0.60. The resultant landing wing loading for the
recoverable booster was approximately 40 1b/sq ft. With the above assump-
tions, the models tested were approximately 1/50 scale. The purpose of
the investigation is to provide preliminary aerodynamic information to
assist in the evaluation of the technical feasibility of the recoverable-
booster concept.

Data were obtained over a range of angles of attack from -2° to 120.
A few data were obtained at a sideslip angle of 5°. The Reynolds number

per foot varied from about 1.6 X 106 to 3.2 X 106.
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SYMBOLS

The results of this investigation are presented in coefficient and

parameter form, referred to the stability axes for longitudinal data and
the body axes for lateral-directional data. The moment reference was

at 0.258 in the chord plane of the wing, and was 16.5 inches forward of
the model base.

1ift coefficient, Légt
drag coefficient, Dgg

Pitching moment
gSc

pitching-moment coefficient about 0.25c,

Rolling moment
gSb

rolling-moment coefficient,

Yawing moment
qShb

yawing-moment coefficient,

Side force

side-force coefficient, S

lift-curve slope, BCL/Ba, per deg

longitudinal-stability parameter, BCm/BCL

drag-due-to-1ift factor

effective-dihedral parameter, ACZ/AB, per deg
directional-stability parameter, ACn/AB, per deg
side-force parameter, Aﬂyﬁﬁﬁ, per deg

lift-drag ratio, CL/CD

wing span, in.
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c wing chord, in.

c mean aerodynamic chord, based on total wing area, in.
M free-stream Mach number

q free-stream dynamic pressure, lb/sq ft
R Reynolds number per foot

S wing area, sq ft

f%i aerodynamic-center location

a angle of attack, deg

B angle of sideslip, deg

Subscripts:

b at model base

o at zero 1lift

max maximum

DESCRIPTION OF MODEL

The model consisted of a wing and body to simulate the first-stage
recoverable booster (ref. 2) together with upper stages arranged in
parallel as shown in figures 1l(a) and 1(b). The first-stage booster
was sized to provide an estimated take-off wing loading of 120 1b/sq ft
for the largest complete configuration and was identical to the model
of reference 2. Dimensions of the expendable rocket boosters conformed
approximately to those of several boosters currently being developed.
The fuselage of the recoverable booster was a semicylinder 6 diameters
long with an ogival nose 7 diameters long. The volume of the fuselage
was approximately that required if conventional turbojet or turboram-
Jjet propulsion were to be utilized. No powerplant packages or inlets
were incorporated into the preliminary configuration. The wing had a
delta planform with leading-edge sweep of TOO and a wedge-slab section
with constant 2-percent thickness rearward of the 4O-percent-chord sta-
tion. (See fig. 1.) The wing section was unsymmetrical and was mounted
with the wedge surface adjacent to the fuselage. The root chord was
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identical to the fuselage length, and the mean aerodynamic chord, based
on the total planform area, was 22.0 inches.

Several rocket boosters and spacecraft were mounted either on the
fuselage side or the wing side of the recoverable booster, as shown in
figure 1. Thus, either piggyback or underslung arrangements were simu-
lated. TFor all tests the base of the rocket booster was coincident with
the model base. Two rocket boosters were used, as shown in figure 1(c);
one was approximately 5.5 diameters long to simulate a single rocket
stage, and the other was approximately 13.3 diameters long to simulate
a two-stage rocket booster.

Three types of spacecraft were attached in turn to each of the two
rocket boosters - a blunted 40° ballistic nose cone, a rocket with a
ratio of body diameter to booster diameter of 0.42, and a 70° delta wing
with slab sections and semicircular leading edge mounted on the rocket
to form a winged rocket. Details of the spacecraft are given in
figure 1(c).

Photographs of the take-off or launch configurations are presented
in figure 2 and the principal model dimensions are summarized in table I.

APPARATUS AND TESTS

The tests were made in the Langley 8-foot transonic pressure tun-
nel at Mach numbers from 0.6 to 1.2 and at angles of attack from -2°
to 12°. For one configuration, data were obtained at both 0° and 5°
sideslip. The range of Reynolds number per foot is shown in figure 3

to vary from about 1.6 x 100 to 3.2 x 109.

Six-component force and moment data were obtained by means of an
internally mounted strain-gage balance. The angles of attack and side-
slip were corrected for balance and sting deflections under load. Axial
force was corrected to correspond to a base pressure, on the recoverable-
booster fuselage and that portion of the wing base intercepted by the
fuselage, equal to the free-stream static pressure. The base drag on
the rocket booster is included in the data. Transition was fixed by a
0.1l-inch band of No. 80 carborundum (0.008-inch-diameter grains) at the
5-percent station on all surfaces,

The accuracy of the data has been estimated on the basis of repeat-
ability of data and balance accuracy to be approximately as follows:

SRAESRRNS LAl
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o A 1= +0.1
By deg « v v v v v e e e e e e e e e e e e e e e e e e e e e 0.1
0 PR T T +0.005
(05 TR T S S S T T +0.001
O +0.002
Cl - <o N e o
Chi v & v v » + e e 4 e e e e e e e e e e e e e e e e e e . . . *0.001
Cy v v v v e e e e e e e e e e e e e e e e e e e e e e ... 0,002

PRESENTATION OF RESULTS

The data fall into three principal divisions: characteristics of
configurations with the high-wing recoverable booster, characteristics
of configurations with the low-wing recoverable booster, and effects of
adding upper stages to the recoverable booster. The data are presented
as follows:

Figure

High~wing recoverable booster:

Aerodynamic characteristics of the several spacecraft

attached to a one-stage rocket booster mounted on top

of the high-wing recoverable booster . . . « « « « « .« . . L
Aerodynamic characteristics of the several spacecraft

attached to a two-stage rocket booster mounted on top

of the high-wing recoverable booster . . . e v e e e e 5
Aerodynamic characteristics of the winged-rocket spacecraft

attached to a two-stage rocket booster mounted above or

beneath the high-~wing recoverable booster . . . . . . . . . 6
Variation with Mach number of the longitudinal-stability

and drag parameters for the several spacecraft attached

to a one-stage rocket booster mounted on top of the

high-wing recoverable booster . . . . v ¢« v v ¢« « « « o« + . T
Variation with Mach number of the longitudinal-stability

and drag parameters for the several spacecraft attached

to a two-stage rocket booster mounted on top of the

high-wing recoverable booster . . . . . . . . e e e e 8
Varistion with Mach number of the longitudlnal—stabillty

and drag parameters for the winged-rocket spacecraft

attached to the two-stage rocket booster mounted above

or beneath the high-wing recoverable booster . . . . . . . 9
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Figure

Variation of the aerodynamic-center location with Mach num-
ber for the several upper stages mounted on top of the
high-wing recoverable booster . . . B (0
Variation of the lift-drag ratio with llft coefficient for
the several upper stages mounted on top of the high-wing
recoverable booster . . . . . . o 0. 00 0w e e e e e .. 1]

Low-wing recoverable booster:

Aerodynamic characteristics of the several spacecraft

attached to a one-stage rocket booster mounted beneath

the low-wing recoverable booster . . . . O =
Aerodynamic characteristics of the several spacecraft

attached to a two-stage rocket booster mounted beneath

the low-wing recoverable booster . . . e o e e e . . 13
Aerodynamic characteristics of the w1nged-rocket spacecraft

attached to a two-stage rocket booster mounted above or

beneath the low-wing recoverable booster . . . . v .. 1k
Variation with Mach number of the longltudlnal-stablllty

.and drag parameters for the several spacecraft attached

to a one-stage rocket booster mounted beneath the low-

wing recoverable booster . . . . . . . 5
Variation with Mach number of the longitudinal—stabllity

and drag parameters for the several spacecraft attached

to a two-stage rocket booster mounted beneath the low-

wing recoverable booster . . . R [
Variation with Mach number of the longltudlnal-stablllty

and drag parameters for the winged-rocket spacecraft

attached to the two-stage rocket booster mounted above

or beneath the low-wing recoverable booster . . . . . . . . . 17
Variation of the aerodynamic-center location with Mach

number for the several upper stages mounted beneath

the low-wing recoverable booster . . . . . . . . . . ... 18
Variation of the lift-drag ratio with 1lift coefficlent

for the several upper stages mounted beneath the low-

wing recoverable booster . . . ¢« ¢ ¢ ¢« ¢ ¢ 4 4« 4w o .« . . 19

Effect of adding upper stages:
Variation with Mach number of the longitudinal-stability
parameter and zero-lift drag coefficient for the low-
wing recoverable booster without and with a two-stage
rocket booster and winged-rocket spacecraft mounted
beneath the wing . . . . . . . .. .. ... .. .. .. .. 20
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Figure

Aerodynamic characteristics for the low-wing recoverable
booster without and with a two-stage rocket booster and
winged-rocket spacecraft mounted beneath the wing.
B =52 . i i e e e e e e e e e e e e e e e e e e e e e 2
Lateral-directional stability parameters for the low-wing
recoverable booster without and with a two-stage rocket
booster and winged-rocket spacecraft mounted beneath
the WINg . ¢ ¢« v v v v v v v e et e e e e e e e e e e e 22

DISCUSSION

High-Wing Recoverable Booster

Iongitudinal stability.- Comparison of the data of figures 4 and 5
for the high-wing recoverable booster shows that the effects of changing
from a one-stage rocket booster to a two-stage rocket booster were gener-
ally small. The principal effect was that a small positive increment in

Cm,o resulted. With the two-stage rocket booster, the spacecraft was

forward of the wing leading edge regardless of which spacecraft was
installed, and an effective upwash on the wing, coupled with the increased
projected area forward of the wing leading edge, caused the stability
changes shown. Figure 7 shows that when the spacecraft was located behind
the leading edge of the wing, as with the one-stage rocket booster, the
only change in longitudinal stability resulting from changing from the
ballistic to the winged-rocket spacecraft was a small decrease in sta-
bility near M = 1.0. However, with the two-stage rocket booster

(fig. 8), in which case the spacecraft was forward of the wing leading
edge, substitution of the winged-rocket spacecraft for either the bal-
listic or the rocket spacecraft caused a destabilizing increment in

CmCL of about 0.02 over the Mach number range. This is in good agree-

ment with the value of 0.03 which had been estimated on the basis of

the centroid of the combined areas of the first-stage wing and space-
craft ving. Comparison of figures 7 and 8 for the configurations with
the winged-rocket spacecraft shows that a decrease in static margin
occurred when the two-stage rocket booster was used (winged-rocket
spacecraf't in front of leading edge of recoverable-booster wing) rather
than the one-stage rocket booster (winged-rocket spacecraft behind
leading edge of recoverable-booster wing). Furthermore, it is seen that
the increase in static margin with M was more abrupt for the arrange-

ments with the one-stage rocket booster than for those with the two-
stage rocket booster.

SRR
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Figures 6 and 9 show that the principal effect of moving the two-
stage rocket booster and winged-rocket spacecraft from the wing side
(piggyback) to the fuselage side (underslung) of the high-wing recover-
able booster was a small decrease in the longitudinal stability which
varied from about 0.010 to 0.015 over the Mach number range. As pre-
viously mentioned, when the spacecraft was situated behind the leading
edge of the wing of the recoverable booster, only small changes in sta-
bility occurred when the winged-rocket spacecraft was installed; there-
fore, it is believed that with the one-stage rocket booster the change
in position from piggyback to underslung would cause less change in
stability than shown in figure 9. Thus it is concluded that the measured
changes in longitudinal stability due to the position of the upper stages
should not be detrimental to the choice of either arrangement.

The effects of the several upper-stage arrangements are shown in
figure 10 in terms of the aerodynamic-center location. In this figure
the shift in aerodynamic-center location with Mach number for the one-
stage rocket booster and spacecraft is nearly 15 percent, whereas that
for the two-stage rocket booster and spacecraft is only about 9 percent.
Generally the spacecraft configuration and the change from a piggyback
to an underslung arrangement did not affect the aerodynamic-center shift
in the transonic speed range.

Drag and AQ[D.- The data from which the zero-l1ift drag-coefficient
curves of figures 7, 8, and 9 were derived have been supplemented by the
addition of test points at M = 0.94 and 1.02. Comparison of figures 7
and 8 shows that when the one-stage rocket booster was used the drag rise
near sonic speed was larger and steeper than when the two-stage rocket
booster was used. Such a result would be expected from the more adverse
area distribution of the configuration with the one-stage rocket booster.
The entire booster frontal area of the one-stage rocket booster must be
added near the peak of the area-distribution curve for the recoverable
booster alone. Figure 9 indicates that, from a drag standpoint, neither
the piggyback nor the underslung arrangement is to be preferred.

Figure 11 shows that the installation of the winged-rocket space-
craft generally resulted in a small decrease in maximum L/D and that
this decrease was greatest when the two-stage rocket booster was used.
Also shown is the fact that mounting the upper stages on the fuselage
side (underslung) gave slightly higher values of (L/D)yax than mounting
them on the wing side (piggyback), although the differences were small.
This characteristic probably will not continue into the hypersonic speed
range.

wemeaav—; -
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Iow-Wing Recoverable Booster

Iongitudinal stability.- As previously observed for the high-wing
recoverable-booster arrangements, figures 12 and 13 show that with the
low-wing recoverable booster the effects of interchanging the one- and
two-stage rocket boosters and of interchanging the spacecraft were small.
A small negative change in Cm,o resulted from installation of the two-

stage rocket booster in place of the single-stage rocket booster. When

the winged-rocket spacecraft was attached to either the one- or two-stage

rocket booster a small destabilizing increment in Cmc , as shown in fig-
L

ures 15 and 16, was experienced. This increment was about 0.0l for the
one-stage rocket booster and about 0.02 for the two-stage rocket booster
and was approximately uniform throughout the Mach number range. Mounting
the winged-rocket spacecraft and two-stage rocket booster on the fuselage
side (piggyback) rather than in the underslung position caused a decrease
in static margin varying from 1.5 to 3 percent. (See figs. 1k and 17.)
This result is similar to that observed for the high-wing configuration.
Figure 18 shows that the aerodynamic-center shift with Mach number was
again greater for the configuration with one-stage rocket booster and
spacecraft than for the configuration with two-stage rocket booster and
spacecraft. The aerodynamic-center shift for the former was about 10 per-
cent, whereas the shift for the latter was only 8 percent. In all cases,
the aerodynamic-center shift was essentially independent of the spacecraft
configuration or the position of the upper stages (piggyback or underslung).

Drag and L/D.- Figures 15 and 16 show that the transonic drag rise
for the low-wing arrangement was essentially independent of the spacecraft,
but as mentioned earlier for the high-wing arrangement, the one-stage
rocket booster produced larger transonic drag rise than the two-stage
rocket booster, and the drag rise commenced at a lower Mach number and
was more abrupt, as well. Furthermore, figure 17 shows that the position
of the upper stages had no effect on the transonic drag-rise character-
istics. Figure 19 shows that small decreases in maximum L/D resulted
when the winged-rocket spacecraft was installed on the rocket boosters.
Insignificant differences in maximum L/D are shown for the two rocket
boosters, the three spacecraft, and the two upper-stage positions
(piggyback and underslung).

Recoverable Booster Without and With Upper Stages

Data from reference 2, which reports the characteristics of the
recoverable booster, have been compared with the results of the present
tests to ascertain the aerodynamic effects of adding large upper stages.
The configuration selected for the comparison consisted of the low-wing
recoverable booster with the two-stage rocket booster and winged-rocket
spacecraft mounted in the underslung position. These upper stages were

UNCLASSIFIED,
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selected because they were the largest ones tested and would be expected
to produce the largest changes.

The effect of the upper stages on the longitudinal stability is
shown in figure 20 for the selected moment reference. The stability
change is shown to be negligible. Examination of the curves from which
figure 20 was derived showed that a negligible change in Cp o resulted

when these upper stages were added. Changes in the flow field near the

leading edge of the first-stage wing, caused by the location of the space-
craft forward of the wing, apparently compensated for the moment contribu-
tion due to the drag of the rocket booster to result in this small change

in Cm,o' The drag-coefficient change shown in figure 20, however, is

significant. At subsonic speeds, the drag-coefficient increase was

about 0.004, of which the base drag of the rocket booster contributed
about 0.0015 and the increase in skin friction contributed an estimated
0.002. At M = 1.2 the increment increased to about 0.008, which amounts
to about a 50-percent increase over the drag coefficient of the recover-
able booster alone. This drag increase could have been substantially
reduced by the addition of a closure fairing on the base of the rocket
booster, since the drag coefficients shown include the base drag of this
booster, which is estimated to be about 0.003 at M = 1.2. The transonic l
drag level will probably be a major controlling factor in the design of |
a suitable powerplant configuration for the recoverable booster, inasmuch |
as it is desirable to have a large excess of thrust over drag to reduce
the acceleration fuel required.

The aerodynamic characteristics at a sideslip angle of 50 are shown
for the recoverable booster without and with the upper stages in figure 21,
and the lateral-directional stability derivatives are shown in figure 22.
Installing the upper stages caused little change in the magnitude of the
effective-dihedral parameter ClB but decreased the directional stabil-

ity as much as 50 percent. The large increase in the side-force parameter
also demonstrates the effect of the large upper stages. Because of the
great reduction in CnB coupled with the high values of CZB at high

angle of attack, configurations such as this may encounter Dutch roll
oscillations at the steep climb attitude expected for this type of vehicle.
This tendency may be alleviated by an increase in the effective vertical-
fin area to increase the directional stability, an improvement believed
necessary for hypersonic speeds.

SUMMARY OF RESULTS

An investigation at transonic speeds has been made in the Langley
transonic pressure tunnel to ascertain the aerodynamic characteristics

oranee e SRR
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of several launch configurations composed of large expendable rocket
boosters and various spacecraft mounted in parallel with one concept of

a horizontal-take-off-and-horizontal-landing recoverable booster. The
data have been compared with previously obtained data for the recoverable
booster alone to determine the effects of the addition of the upper stages
to the recoverable booster. The principal results were as follows:

1. The changes in longitudinal stability caused by using a two-stage
rocket booster rather than a one-stage rocket booster were small. Neither
a piggyback nor an underslung arrangement seemed to offer particular
advantages.

2. For all upper-stage arrangements, the winged-rocket spacecraft
produced a small reduction in static margin which was less when the space-
craft wing was located behind the leading edge of the first-stage wing
than ahead of it.

3. Arrangements with the one-stage rocket booster resulted in higher
transonic drag than those with the two-stage rocket booster.

L. Neither the high-wing nor the low-wing arrangements demonstrated
superior transonic-drag or drag-rise characteristics.

5. Addition of the largest upper stages did not change the longitu-
dinal stability of the basic recoverable booster.

6. Addition of the upper stages caused a transonic drag increase of
about 50 percent of the value for the recoverable booster alone, but a
sizable reduction could be achieved by addition of suitable closure
fairings at the rocket base.

T. Addition of the upper stages did not change the lateral stability,
but reduced the directional stability nearly 50 percent.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 1, 1962.
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Recoverable booster:

Fuselage:
Length, in. . . . . . . .
Diameter, in. . . . . . .
Forebody fineness ratio .
Afterbody fineness ratio .
Base area, sq in. . . . .

Wing:
Total area, sq in. « e .
Span, in. . . . . . . . .
Root chord, in. . . . . .
Tip chord, in. . e . .
Thickness, percent chord .

Leading-edge sweep angle, deg e e e e e e e e s e e e e e s

Mean aerodynamic chord, in.

Moment reference center, percent @ . . . . + « s ¢ ¢ ¢ o 4 .
Moment reference center, in.

Vertical tail:
Area (exposed), sq in. .
Span (exposed), in. . . .
Root chord, in. . . . . .
Tip chord, in. e e e e .
Thickness, percent chord .

frombase . . . . . . ¢ 0 .

Leading-edge sweep angle, deg . . « o + o ¢ o o o « o o o«

One-stage rocket booster:

Length, not including interstage, in. . . . . . . . . . . . .

Diameter, in. . . . . . . .
Length/Diemeter . . . . . .

Two-stage rocket booster:

.

e s s e & o a4 s e » = s & s+ »

Length, not including interstage, in. . .. 0 00 e e e . e

Diameter, in. . . . . ..
Length/Diemeter . . . . . .

Ballistic spacecraft:
Length, in. . . . . . . ..
Base diameter, in. ...
Nose-cone included angle, deg
Nose radius, in. e e e e .

Rocket spacecraft:

e s & s e & & 4 2 e s e o s e o

Length, including interstage, in. . . . . . . . « ¢« « « « . .

Diameter, in. . . . . .
Nose-cone included angle, deg
Nose radius, in. “ e e e

Winged-rocket spacecraft:
Body diameter, in. . e .

Length, including interstage, in. [P

Nose-cone 1ncluded angle, deg
Nose radius, in. e e e e
Wing area, total, sq in. .
Wing area, exposed, sq in.
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Figure 1.- Concluded.
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(a) Winged-rocket spacecraft attached to one-stage rocket booster mounted
beneath low-wing recoverable booster.

(b) Winged-rocket spacecraft attached to one-stage rocket booster mounted
on top of low-wing recoverable booster.

(c) Winged-rocket spacecraft attached to two-stage rocket booster mounted
beneath low-wing recoverable booster.
1-62-2052
Figure 2.- Photographs of HTOHL recoverable booster with various upper-
stage arrangements.
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(d) Ballistic spacecraft attached to two-stage rocket booster mounted
beneath low-wing recoverable booster.
1~62-2053
(e) Ballistic spacecraft attached to two-stage rocket booster mounted
T on top of high-wing recoverable booster.

Figure 2.- Concluded.
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Figure 4.- Aerodynamic characteristics of the several spacecraft attached
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Figure 14.- Continued.
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(c) Variation of pitching-moment coefficient with 1ift coefficient.

Figure 1k.- Continued.
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Figure 1L.- Concluded.
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Figure 18.- Variation of the aerodynamic-center location with Mach number

for the several upper stages mounted beneath the low-wing recoverable
booster.
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(b) With two-stage rocket booster.

Figure 19.- Concluded.
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(a) Variation of rolling-moment coefficient with angle of attack.
Figure 21.- Aerodynamic characteristics for the low-wing recoverable

booster without and with a two-stage rocket booster and winged-
rocket spacecraft mounted beneath the wing. B = 5°.
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(c) Variation of side-force coefficient with angle of attack.

Figure 21.- Concluded.
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Figure 22.- Lateral-directional stability parameters for the low-wing

. recoverable booster without and with a two-stage rocket booster and
winged-rocket spacecraft mounted beneath the wing.
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